Aller au menu Aller au contenu
Our engineering & master degrees
Ecole nationale supérieure de l'Énergie, l'Eau et l'Environnement
-
Engineering school in energy, water and environment
Our engineering & master degrees
Our engineering & master degrees

> Studies > E3-STU-COURSES

Advanced Control : Methods and Practical Implementation Tools - 5EUS5AUA

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In
  • Number of hours

    • Lectures : 26.0
    • Tutorials : -
    • Laboratory works : 34.0
    • Projects : -
    • Internship : -
    ECTS : 5.0
  • Officials : Christophe BERENGUER

Goals

The aim of this course is to present advanced control systems methods for optimal and predictive control and fault detection and isolation & fault tolerance. Tools and methods for real-time implementation of control algorithms on embedded systems are also presented

Content

1) Predictive control : Illustrative example ; Prediction equations for linear time invariant systems ; Definition of the cost function ; Link with the unconstrained optimal regulator ; Constraints definition ; Constrained predictive control ; Control parametrization ; Application examples ; Nonlinear Predictive control
2) Model-based Diagnosis : Introduction, basic concepts, motivation and preliminaries: fault detection and isolation and its use for fault-tolerance and complex systems monitoring and safety. Process models and fault modelling. Presentation of the different approaches and focus on the model-based approach. ; Data validation and reconciliation: measurement errors, balance equations, state estimation for constrained and unconstrained systems, linear and bilinear systems ; Fault detection with parity equations - Static and dynamic cases: Analytical redundancy, parity equations and generation of residuals. Enhanced and structured residuals. Properties and analysis of residual signals ; Fault detection and isolation with state observers and state estimation. Unknown inputs observers. Observers banks.

3) Embedded system code design & implementation : Real-time and Embedded Systems design : Real-Time scheduling algorithms on uni and multiprocessor systems, programming techniques

Prerequisites

Basic course in control systems, scientific programming and real-time computer systems

Tests

Session 1 : 60%CT + 40% CC
Session 2 : R Remplace CT

CC 40% + CT 60%

The exam is given in english only FR

Calendar

The course exists in the following branches:

see the course schedule for 2019-2020

Additional Information

Course ID : 5EUS5AUA
Course language(s): FR FR

You can find this course among all other courses.

Bibliography

1) R. Isermann, Fault-Diagnosis Systems - An Introduction from Fault Detection to Fault Tolerance. Springer, 2006.
2) E. F. Camacho and C.Bordons Alba, Model Predictive Control, Springer 2004.
3)M. Alamir, A Pragmatic Story of Model Predictive Control: Self-Contained algorithms and case-studies, CreateSpace, 2013.

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In

Date of update February 8, 2017

Grenoble INP Institut d'ingénierie Univ. Grenoble Alpes