

New rating curve for the Isère River at Grenoble-Campus: using in-situ measurements in a Bayesian approach

Séminaire IGE - 6/12/24 - A. Hauet & C. Rousseau

16/11/23 ADCP gauging at Grenoble-Campus station

Discharge time-serie of the Isère at Grenoble-campus autumn - winter 2023-2024. Source : BDOH

New rating curve for the Isère River at Grenoble-Campus: using in-situ measurements in a Bayesian approach

<u>Outline</u>

- Discharge time-series : for who and for what ?
- Establishing streamflow series & Stage-Discharge rating curves
- Grenoble-Campus station
- Problem encountered following the floods of winter 2023-2024
- Rating-curve using BaRatin
- Application to Isère at Grenoble-Campus station : data and hydraulic modelling
- Analysis of the new curve
- Conclusions and Perspectives

Discharge time-series : for who and for what ?

- Continuous time-series of discharge Q(t) are needed for a lot of applications
 - Computation descriptive statistics of the water resource
 - Mean annual flow, flow regime, return-period of events...
 - To define a regulatory framework for water uses \rightarrow Environmental flow downstream dams > 1/20th of the mean-annual flow
 - Sizing of structures \rightarrow embankment dams must resist to a 10,000 years return period flood

Discharge time-series : for who and for what ?

- Continuous time-series of discharge Q(t) are needed for a lot of applications
 - Calibration / validation of hydrological models
 - Forecasting models for warning of floods or droughts
 - Optimization of the production of electricity
 - Study of the impact of climate-change

Damaged cars are seen along a road on the outskirts of Valencia on October 31, 2024. Eva Maneza Reuters

3löschl et al., Nature (2019)

☑ Prévisions probabilistes de débits journaliers SOUICE : EDF-DTG

Discharge time-series : for who and for what ?

- Continuous time-series of discharge Q(t) are needed for a lot of applications
 - Computation of the watershed fluxes
 - Sediment
 - Nutriments, contaminants, plastics...

- Punctual measurement of discharge can be realized
 - So-called "gaugings"
 - A large variety of gauging methods

- Discharge cannot be directly measured continuously and in real-time
- Idea:
 - 1. Measuring a parameter
 - Which is a good proxy of the discharge
 - Easy to measure precisely, in real time and continuously

Water stage (h) !

- Discharge cannot be directly measured continuously and in real-time
- Idea:

fédération OSUG

- 1. Measuring a parameter
 - Which is a good proxy of the discharge
 - Easy to measure precisely, in real time and continuously
- 2. Computing the discharge from the water stage Q = f(h)
 - Using a hydraulic model of varying complexity
 - Calibrated on a set of gaugings for a large range of h/Q

- Water stage (h) !

Rating curve → stage-discharge relationship

- Hydraulic controls shape the rating curve
 - Physical properties of a channel which determine the relationship between stage and discharge at a location in the channel (World Meteorological Organization, 2012)

Section control

- Natural or artificial geometric singularity \rightarrow Fall (critical flow)
- Upstream water level ~ horizontal
- Torricelli $\rightarrow Q = \mu * B * h * \sqrt{2gh} \rightarrow Q = a * h^{3/2}$

fédération OSUG

- Hydraulic controls shape the rating curve
 - Physical properties of a channel which determine the relationship between stage and discharge at a location in the channel (World Meteorological Organization, 2012)

Channel control

- Quasi steady and uniform flow
- Water level ≈ parallel to the riverbed
- Manning-Strickler $\rightarrow Q = KAR_h^{2/3}S_f^{1/2} \rightarrow Q = a * h^{5/3}$

- Hydraulic controls shape the rating curve
 - Depending on the water level, differing controls may appear or disappear
 - Several controls may add up

- Hydraulic controls shape the rating curve
 - Change in the morphology of the control \rightarrow rating-curve shift
 - Management of temporal variability by a succession of "static" rating curves
 - Supposed to represent a state of hydraulic control over a given period

The Wairau River at Barnett's Bank, New Zealand

- Commissioning in 1992, funding by EDF, Grenoble-INP ENSHMG P. Bois (now ENSE3), Pôle Grenoblois d'Etudes et de Recherche sur les Risques Naturels (PGRN, now PARN).
- Location : Grenoble campus, Gières, France
- Manager : Grenoble INP Ense3, Obs-Eau platform (Ense3, Phitem, IGE)
 - Scientific manager : Julien Némery / Technical manager : Christophe Rousseau, with the help of IGE technical department (ST)
- Attachment : ZABR Arc-Isère

Dumas (2004)

- River concerned: Isère river, tributary of the Rhône
- Watershed at Grenoble-campus :
 - Area : 5570 km², 70% at more than 1000 m altitude
 - Main tributaries : Arc and Arly
 - mean annual discharge : 175 m³/s
 - Significant influence of human activities (hydroelectric dams, dikes)

- Objectives
 - Training :
 - practical work on large rivers flow measurements, data for education (Grenoble-INP Ense3, UGA Phitem)
 - Monitoring :
 - campus flood protection system (ENSE3 + UGA DAD)
 - hydrometric measurements for St Egrève dam management (EDF)
 - regulatory measures during Isère and Arc dam flushings (EDF-DTG)
 - regulatory control of the effects of the release of cooling water from the ILL neutron reactor (Institut Laue-Langevin)
 - Research & development :
 - long term high frequency sediment observatory (IGE, INRAE & EDF-DTG)
 - development of sand transport measurement technology (EDF-DTG, CNR, INRAE Lyon)
 - determination of flow rate by surface velocities measurements using images (IGE, Ténévia)

Training

- Continuous measurements: level, temperature, conductivity, turbidity, pH, O2
- Calculated measurements: flow, Suspended Sediments Concentration (SSC), hydraulic slope (with the Isère-PDT station located downstream),
- Main station equipment:
 - Main supply, network
 - Limnimetric scale
 - Hydrometric cable ferry (EDF-DTG)
 - Campbell Scientific CR1000 datalogger
 - OTT sensors PLS (level) and PLS-C (level, temperature, conductivity)
 - Hach SolitaxTurbidity probe (EDF-DTG partnership)
 - ISCO Sampler
 - Hach pH and conductivity probes (ILL partnership)
 - Axis network camera
 - Sontek M9 and RDI Rio Grande ADCP

Level sensor to clean !

Access door to measuring tubes

ADCP pulled by cable ferry

Limnimétric scale

• Continuous measurements: level, temperature, conductivity, turbidity, pH, O2

Ō

 \leftarrow

- Calculated measurements: flow, Suspended Sediments Concentration (SSC), hydraulic slope (with the Isère-PDT station located downstream),
- Main station equipment:
 - Main supply, network
 - Limnimetric scale
 - Hydrometric cable ferry (EDF-DTG)
 - Campbell Scientific CR1000 datalogger
 - OTT sensors PLS (level) and PLS-C (level, temperature, conductivity)
 - Hach SolitaxTurbidity probe (EDF-DTG partnership)
 - ISCO Sampler
 - Hach pH and conductivity probes (ILL partnership)
 - Axis network camera
 - Sontek M9 and RDI Rio Grande ADCP
- Raw data website (last month) : https://g2elab-shiny.g2elab.grenoble-inp.fr/Isere/

- Continuous measurements: level, temperature, conductivity, turbidity, pH, O2
- Calculated measurements: flow, Suspended Sediments Concentration (SSC), hydraulic slope (with the Isère-PDT station located downstream),
- Main station equipment:
 - Main supply, network
 - Limnimetric scale
 - Hydrometric cable ferry (EDF-DTG)
 - Campbell Scientific CR1000 datalogger
 - OTT sensors PLS (level) and PLS-C (level, temperature, conductivity)
 - Hach SolitaxTurbidity probe (EDF-DTG partnership)
 - ISCO Sampler
 - Hach pH and conductivity probes (ILL partnership)
 - Axis network camera
 - Sontek M9 and RDI Rio Grande ADCP
- Raw data website (last month) : https://g2elab-shiny.g2elab.grenoble-inp.fr/Isere/
- Processed data website : https://bdoh.inrae.fr/ARC-ISERE/station/GRENOBLE-CAMPUS

Winter 2023-2024 floods

- An exceptional 2023 2024 winter :
 - 4 successive floods
 - including the largest flood observed over the last 30 years.

Date	H (m)	Q (m3/s)	Туре
15/11/2023	6,71	1047	vicennale
22/03/2001	6,36	938	décennale
13/12/2023	6,21	921	décennale
02/05/2015	6,27	866	quinquennale
31/05/2010	6,27	866	quinquennale
30/05/2008	6,13	840	quinquennale
15/05/1999	5,84	829	quinquennale
16/10/2000	5,80	821	quinquennale
05/01/2018	5,63	787	quinquennale
01/12/2023	5,46	752	quinquennale
13/01/2004	5,23	708	biennale
19/01/2024	5,25	711	biennale
30/12/2021	5,08	680	biennale
21/06/2024	5,17	677	biennale
21/06/2013	5,12	664	biennale

Winter 2023-2024 floods

- 2 gaugings realized by IGE-Ense3 at very high flows:
 - 12/12/2023 13:00 → h=5,69m ; Q= 791 m³/s ± 7%
 - 13/12/2023 10h25 → h=6,17m ; Q= 923 m³/s ± 9%
- Using an ADCP SonTek M9 + GPS Hemisphere
 - Mounted on a board; Deployed with a rope from the Passerelle de l'île d'Amour
- Measurements in difficult conditions:
 - High velocities & Lots of floating debris (big tree trunks !)
 - High sediment load that perturbates the acoustic waves \rightarrow GPS helps a lot
 - Unsteady flows \rightarrow quick measurement needed

د 1.5 گ

0.5

Les hydrologues de l'IGE étaient sur le pont cette semaine pour mesurer des débits exceptionnels de l'Isère à 800 m3/s le marc le mercredi 13 décembre (crue légèrement inférieure à la crue vicennale définie comme de période de re sont habituellement comprises entre 130 et

Largest discharge ever measured at the station !

Problem encountered at Grenoble-Campus following the floods of winter 2023-2024

Finding: deviations for high flow rates

- comparing with DREAL Bastille station values
- comparing with ADCP gaugings

 \rightarrow The current rating curve (2018A1) is called into question for high flow rates

	Gaugi (ENSE3	ngs -IGE)		Grenoble-Bastille (DREAL)	Station	Grenoble-Campus Station - 2018A1 (EDF-DTG – ENSE3 – IGE)		
Date heure UTC	H (m)	Q (m³/s)	Incertitude	Date heure UTC	Date heure UTC Q (m ³ /s)		Q (m³/s)	
12/12/2023 13:00	5,69	791	7,2% 734-848	12/12/2023 12:52	812	12/12/2023 13:00	762	
13/12/2023 10:25	6,17	923	8,8% 842-1004	13/12/2023 10:30	913	13/12/2023 10:30	842	

Comparison of values during the 12 & 13/12/23 flood

• **BaRatin :** Bayesian Rating-curves

- Free and open-source software developed by Inrae Lyon (Le Coz et al., 2014)
- 1. User describes the hydraulic controls of the site
 - Channel control or Section control
 - How they appear / disappear / add up depending on the water level

	Contrôle nº1	Contrôle n°2	Contrôle n°3	
Segment n° 3 (Haut)			\checkmark	
Segment n° 2		V		
Segment n° 1 (Bas)	V			

• **BaRatin :** Bayesian Rating-curves

- Free and open-source software developed by Inrae Lyon (Le Coz et al., 2014)
- 1. User describes the hydraulic controls of the site
- 2. For each hydraulic control, user provides "a priori" knowledge of parameters
 - Channel Control $\rightarrow Q = K * B * S^{1/2} * h^c$
 - Strickler friction coefficient K; Stream width B; Stream slope S; Coeff c (\approx 5/3); Activation stage
 - Section control $\rightarrow Q = \mu * B * \sqrt{2g} * h^c$
 - Weir coefficient μ ; weir width B; Coeff c (\approx 3/2); Activation stage
 - Central value + Normal distribution uncertainty

Control #1	Control #3 Control #4	Control #5	
Description			
Rectangular channel			~
$Q=K_{s}B_{w}S^{1/2}(h-b)^{c}(h>k)$	Mean value	Uncertainty (+/-)	A
← Activation stage k[m]	0.5	0.2	
Strickler coefficient $K_{g}[m^{1/3}.s^{-1}]$	30.0	10.0	
\longleftrightarrow Channel width $B_{W}[m]$	60.0	5.0	
Slope s[-]	3.0E-4	1.0E-4	
🥟 Exponent c[-]	1.67	0.05	

Physical parameters

Ť

- **BaRatin :** Bayesian Rating-curves
 - Free and open-source software developed by Inrae Lyon (Le Coz et al., 2014)
 - 1. User describes the hydraulic controls of the site
 - 2. For each hydraulic control, user provides "a priori" knowledge of parameters
 - 3. The prior rating curve and it's prior uncertainty are computed
 - Using the user's priors only
 - Large uncertainties

- **BaRatin :** Bayesian Rating-curves
 - Free and open-source software developed by Inrae Lyon (Le Coz et al., 2014)
 - 1. User describes the hydraulic controls of the site
 - 2. For each hydraulic control, user provides "a priori" knowledge of parameters
 - 3. The prior rating curve and it's prior uncertainty are computed
 - 4. User provides a set of gaugings
 - With their uncertainty

- **BaRatin :** Bayesian Rating-curves
 - Free and open-source software developed by Inrae Lyon (Le Coz et al., 2014)
 - 1. User describes the hydraulic controls of the site
 - 2. For each hydraulic control, user provides "a priori" knowledge of parameters
 - 3. The prior rating curve and it's prior uncertainty are computed
 - 4. User provides a set of gaugings
 - 5. Bayesian black magic happens !
 - Posterior distribution of each parameters computed using Bayes theorem
 - From prior distribution / using the gaugings

Reverend **Thomas Bayes** (1702 - 1761)

likelihood prior Posterior distribution $p(\boldsymbol{\theta}|\boldsymbol{y})$

 $y \rightarrow$ gaugings $\theta \rightarrow$ parameters

normalization constant

IGE Institut des géosciences de l'environnement

Rating-curve using BaRatin

• Posterior rating curve

- **Bayesian analysis** using Priors on the parameters & Gaugings
- Most probable Rating Curve + it's uncertainty

Application to Isère at Grenoble-Campus station : data for hydraulic modelling

•Bathymetry

Measured on the same day at ADCP for the submerged part and theodolite for the surface part then reconstitution of the section

 \rightarrow informations on geometry and sizes

Section bathymetry reconstruction

Application to Isère at Grenoble-Campus station : data for hydraulic modelling

• Observation of the river banks

 \rightarrow Strickler coefficient estimation (Ks) :

Level H (m)	river banks	Ks estimate (m ^{1/3} /s)	uncertainty (+/-) (m ^{1/3} /s)
5 < H	Lawn and some tree trunks	20	5
2 < H < 5	Dense vegetation*	10	5
0,5 < H < 2	Without vegetation, shingle	30	10

*depends on the season

Application to Isère at Grenoble-Campus station : data for hydraulic modelling

•Slope

- Continuous measurements have been available between the Grenoble-Campus and Isère-PDT stations since 2020
- The slope depends on the discharge

Hauteur echelle (m)

Application to the Isère at Grenoble-Campus station : hydraulic modelling

• matrix assumption of hydraulic controls

	Contrôle n° 1	Contrôle n° 2	Contrôle n° 3	Contrôle n° 4	Contrôle n° 5		Contrôle	Туре	Hauteur Activation (m)	Incertitude (m)
Segment n° 5 (Haut)							5	Chenal rectangulaire	5,51	+/- 0,5
Segment n° 4							4	Chenal rectangulaire	5,5	+/- 0,5
Segment n° 3			\checkmark				3	Chenal rectangulaire	2,0	+/- 0,5
Segment n° 2				Uncort	ain hut		2	Chenal rectangulaire	0,5	+/- 0,2
Segment n° 1 (Bas)	\checkmark			can't be	e verified	-	1	-Déversoir triangulaire	-2,0	+/- 0,1

Application to Isère at Grenoble-Campus station : hydraulic modelling

Hydraulic controls settings

Contrôle	Туре	Hauteur Activation k (m)	Coef. De Strickler K _s (m ^{1/3} .s ⁻¹)	Largeur du chenal B _w (m)	Pente du chenal S (S.U. 10 ⁻⁴)	Exposant C (S.U.)
5	Chenal rectangulaire	5,51 +/- 0,5	20 +/-5	29 +/-5	7 +/-1	1,67 +/-0,05
4	Chenal rectangulaire	5,5 +/- 0,5	20 +/-5	69 +/-5	7 +/-1	1,67 +/-0,05
3	Chenal rectangulaire	2,0 +/- 0,5	10 +/-5	69 +/-5	5 +/-2	1,67 +/-0,05
2	Chenal rectangulaire	0,5 +/- 0,2	30 +/-10	60 +/-5	3 +/-1	1,67 +/-0,05
Contrôle	Туре	Hauteur Activation k (m)	Coefficient d'ouvrage C _t (S.U.)	Angle v (°)	Acc. de pesanteur g (m.s ⁻²)	Exposant c (S.U.)
1	Déversoir triangulaire	-2,0 +/- 0,1	0,31 +/-0,05	170 +/-20	9,81 +/-0,01	2,5 +/-0,05

computation of the prior rating curve, solely based on hydraulic information and not using any gauging

BaRatin for Isère@Campus

• Set of gaugings:

- All the gaugings since the rating shift of 2018
 - 146 gaugings realized by ADCP ! (mostly done during Ense3 trainings)
 - Including the 2 high flow gaugings of December 2023 (IGE Ense3)
- 5 older high-flow gaugings (EDF + IGE + Ense3):

Date	h (m)	Q (m3/s)	Uncertainty (%)	Method
27/06/1994	4,97	660	10,0	Current-meter
23/06/1995	4,42	569	10	Current-meter
23/03/2001	4,47	591	10	Current-meter
31/05/2010	6,26	886	15	Current-meter
04/05/2015	4,85	643	10	ADCP

BaRatin for Isère@Campus

• Set of gaugings:

- All the gaugings since the rating shift of 2018
 - 146 gaugings realized by ADCP ! (mostly done during Ense3 trainings)
 - Including the 2 high flow gaugings of December 2023 (IGE Ense3)
- 5 older high-flow gaugings (EDF + IGE + Ense3):

Date	h (m)	Q (m3/s)	Uncertainty (%)	Method
27/06/1994	4,97	660	10,0	Current-meter
23/06/1995	4,42	569	10	Current-meter
23/03/2001	4,47	591	10	Current-meter
31/05/2010	6,26	886	15	Current-meter
04/05/2015	4,85	643	10	ADCP

Difficult conditions → downgraded gauging protocol → high uncertainty

BaRatin for Isère@Campus

- Posterior rating curve:
 - Fits really nicely to the gaugings
 - Deviates from the highest but more uncertain gauging
 - Has a very low uncertainty
 - +/- 5% a low discharge
 - +/- 1% at medium discharge
 - +/- 8% at high discharge

Analysis of the new curve : comparison with the old curve

comparison with the previous curve 2018A1 : H < 4 m, similar to the prvious curve H > 4 m, higher flow rates for the same water level

Analysis of the new curve : comparison with the old curve

		Jaugeag IGE Ense	e 3	Grenoble-Bastil DREAL	lle		Greno En	oble-Campus Ise3 - IGE		
Date heure UTC	H (m)	Q (m³/s)	Incertit ude	Date heure UTC	Q (m³/s)	Date heure UTC	H (m)	Q 2018A1 (m³/s)	Q 2018A2 (m³/s)	Incertitude 2018A2 (m³/s)
12/12/2023 13:00	5,69	791	7,2%	12/12/2023 12:52	812	12/12/2023 13:00	5,68	762	799	783-840
13/12/2023 10:25	6,17	923	8,8%	13/12/2023 10:30	913	13/12/2023 10:30	6,14	842	905	876-947
19/12/2023 14:15	2,83	323	4,5%	19/12/2023 14:00	304	19/12/2023 14:00	2,84	322	318	314-323

 \rightarrow a better match between gauging and new curve-estimated values

• 2018A1 • 2018A2

Analysis of the new curve : flood hydrograms comparison with other stations

de l'environnement

 \rightarrow a good consistency with DREAL measurements

Conclusions

- lsère@Campus
 - Stable hydraulic controls
 - A large amount of gaugings
 - But a quite complex rating curve !!
 - Several hydraulic controls
 - Change of the slope with the stage

Conclusions

- A new rating curve and it's uncertainty
 - Computed with BaRatin
 - Thanks to 2 high flow gaugings in December 2023 \rightarrow ADCP + GPS Tracking
 - Considering the slope variation

Conclusions

- A new rating curve significantly different from the previous one for the high flows
 - For $Q > 500 \text{ m}^3/\text{s}$
 - Recalculation of the historical series since 2018
 - More consistent with the neighboring stations

Perspectives

- A probably even more complex rating-curve....
 - Hysteresis effect ??
 - Impact on the stage-discharge relationship ?
 - Work in 2025 with a visiting researcher, Marian Muste, IIHR, Univ of Iowa
 - To be integrated in a new version of BaRatin
 - In which the slope can be expressed as an equation of the stage and time

• Long term discharge series = long term field work

- And a lot of people involved ! Special thanks to them !
 - And to the hundreds of students that conducted so many gaugings !

En Sile	4,319 = 10,5" c	0,	1 10,0 -	t	Echelle	AUTEG	P.T.G	GR HAUT	GR BAS
7/84/15	AITEG	076.	Gluns	GLAN	man 25/09/95	Sections property	Atetion : 26°C	1 100 1140 - 134	Wicoud 31
WHET RESM	15230 VA 263 26 cm	716141	26262	2,62 .	ā 1172m.	14448: VA=AF7/26	11732 m	1,744m	1174m
tem	11 UZ= 11/2°C	zhin n 15% 29 1	94,500		a41826:1172m	11/26. Va 173.310	1,736m	11747m	1,74m
i (56)6: 263m	15h 40, VA= 8631160m	2,618 m	2163cm	9163 m	Men 28/07/95 00	esteur what - towarding	anténeza station = 8	4ci 94.45 .	
3195 mill a 1564	6 Aluman Ballens Au	165= 13,48V :	conort		The set	we ballove Avrice. 13,470,	i shill : count.	10	100
uandi 11/07/95	· sectore makent	Barbatine into	course station: 26	se atthe	States Aroom	9453 10-18 PC	4542.0		7,54m
16h28 = 3 mõe	16 k3+ . VA= 299, Stem .	29944	1 91987 m	R1984	a 9452 59192m	H VL = 1218 °C	71535m	1154om	A153 14
164 115 : 5101 m	ACTUE Washingt	21997m	31003 M	Stoo M	Remile 31/07/195	prettien 2301 ; présent langémetine mitieres station	1394 05: 83,7%	10186 = 13146Va	9478 (Lonal
month the lases	injohnte a pette de la	adattaction and	Anne.	1	5 ghor notim	9404 Va=118,02.cm .	Ac?14m	A: 22.9 m	A122m
undissingly	Can Malawagas de de 16	ide ave de pute	to aroquel arole	<i>AL</i> .	aghes dilowt	9k18 VA+144,92Cm	11219m	1:823 m	A1 22 m
menera la l hras	Empiration interest of	attant Edohs 2	127,5°C		Mendes 10/08/09	5 Meter, 2204 min	ut and	445 Acuman	Beller AVE
Ad1 38 12,63 m	104 10, VA= 264131 CA	21615 m	7,623 m	2162m	Print Letter	tenperature estruceu	dates, 21° à	1405	13,460 Can
Noh43: 2,62m	10446 Un= 263, 26cm	2,608 m	21618 m	2062 m	althos , 71cm	11 Ve=12,00C	01933m	0,74 m	0,74%
undi 17/07/9	15 secter mesent	tension pattone	AUTEG = 13,461	a Mehse (Cane)	- Fuller 71cm	11614 Va=69,75cm	0,733m	9743 m	0,744
A4436+ :2.15m	14636, V1=217,240m	Ci Atalian = 83°C Qi Atrim	2,146 m	2114m	lunder 91 108 0	5 . seeken protect.	températore exitém 6 = 13145 v a 144	un Ataliana 11643 45 : conad	: 14,5%
1442 Rolling	A4450; VAN 219,330 W	2.16+ m	2,173m	2,16 m	a Mh41 : 43 cm	AR 44 . VA= 62 ,5600	0,446 m	01458 m	9,45m
A 19/07/1495	incley perst them	erators interest	Ata hoise : 22	POC Adab to	W STR TO - PATCAN	6 .V2. AB 802	DIAASM	CALETIN	UT TO IN
A=443:1185m	Ach 16 : VA= 186,9100	11864m	1187m	10874	2/11/35	56	53	60	60
(0k 23 / 1186m	ADU26 . VAS 18710500	-11873m	1.870 m	Acota .	2en 31/01/95	actor minted		2000 F	
an \$1/07/1995	Jerten methol ingen stal	1	· C	1	2-11/11 77cm	1 Alk 32 Va 74 Man	16°C 0,79 M	Or805m	0,80%
9k51:2,40n	1 34 58.4241 30cm	2,40 m	2,399	2.39m	11/135 79cm	14438 (V1= 76103 CM	018044	0,819	0,314
menter and mente and gris litert	Sicie prélevée dans sons Mennesitre type "(q 9422: Un-24132 cm	tite an °C pre, o	Stati	on log	book– 1	1995 — J-N	/l. Taur	nier & I	P. Boi

fédération OSUG

IGE

Institut