Our engineering & master degrees
Ecole nationale supérieure de l'Énergie, l'Eau et l'Environnement
-
Engineering school in energy, water and environment

# Robust Control of Mechatronic Systems - 5EU9RCM0

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In
• #### Number of hours

• Lectures : 30.0
• Tutorials : -
• Laboratory works : 30.0
• Projects : -
• Internship : -
ECTS : 5.0
• Officials : Olivier SENAME

### Goals

Ability for design and analysis of Hinfinity controlllers, knowledge on Linear Parameter Varying systems, know-how on robustness analysis methods

The main objective is to study a mechatronics approach for conceiving and for dimensioning intelligent systems.

Content

ROBUST CONTROL COURSE

Introduction
Industrial examples (automotive and electromechanical applications).
1 Tools
Hinf norm, Small Gain theorem
Introduction to LMIs (definition, use of LMIs for stability analysis and control design)
2 Performance analysis
MIMO sensitivity functions, frequency-domain performance indices (sensitivity functions, stability and robustness margins, bandwidth, SISO and MIMO cases)
3 Hinf control design
Performance Specifications (selection of weighting functions, Mixed sensitivity problem)
Solving the Hinf control problem: General control conguration, Hinf controller structure (state feedback, dynamic output feedback), Problem solution using Riccati equations or LMIs -Bounded Real Lemma)
4 Linear Parameter Varying systems
Definition, stability issue, observer and control design
5 Uncertainty and robustness
Modelling the uncertainties (unmodelled dynamics, unstructured uncertainties, structured uncertainties, LFT representation)
Robust stability analysis (small gain theorem - unstructured uncertainties)
Robust performance analysis
mu-analysis - structured uncertainties

Modelisation, simulation and conception of mechatronic systems. Industrial and mobile robotics notions. Specification and evaluation of dynamical performances. Embedded control systems and reference generation. Disturbance estimation and adaptive rejection of disturbances. Fault-tolerant control notions. Code implementation in microprocessors.

Prerequisites

UE Automatique 1 (Automatic control 1)
UE Actionneurs (Actuators)
UE Systèmes Temps-réel (Real-time systems)

Linear Systems, Transfer and state space approach, frequency and time-domain analysis

Tests

Written exam : 30%
Continuous assessment : 70%

Moyenne de l'UE / Course Unit assessment = ER 33.3% + EN 66.6%

The exam is given in english only

Calendar

The course exists in the following branches:

see the course schedule for 2021-2022

Course ID : 5EU9RCM0
Course language(s):

You can find this course among all other courses.

Bibliography

Mechatronic Systems: Fundamentals
Par Rolf Isermann
Springer Science & Business Media, 29 déc. 2007 - 624 pages

1. D. Alazard, C. Cumer, P. Apkarian, M. Gauvrit, and G. Ferreres. Robustesse et commande optimale. Cpadues Editions, 1999.
2. J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control theory. Macmillan Publishing Company, New York, 1992.
3. G. Duc and S. Font. Commande H1 et -analyse: des outils pour la robustesse. Herms, France, 1999.
4. G.C. Goodwin, S.F. Graebe, and M.E. Salgado. Control System Design. Prentice Hall, New Jersey, 2001.
csd.newcastle.edu.au
5. Scherer, C. and Wieland, S. (2004). Linear Matrix inequalities in Control. lecture support, DELFT University.
6. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: analysis and design. John Wiley and Sons, 2005.
www.nt.ntnu.no/users/skoge.
7. K. Zhou. Essentials of Robust Control. Prentice Hall, New Jersey, 1998. www.ece.lsu.edu/kemin

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail cet article Facebook Twitter Linked In

Date of update September 3, 2020

## French State controlled diploma conferring a Master's degree

Ecole Nationale Supérieure de l'Energie, l'Eau et l'Environnement
21 avenue des Martyrs
CS 90624
38031 GRENOBLE CEDEX 1